skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Halder, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report a search for a heavy neutral lepton (HNL) that mixes predominantly with ν τ . The search utilizes data collected with the Belle detector at the KEKB asymmetric energy e + e collider. The data sample was collected at and just below the center-of-mass energies of the ϒ ( 4 S ) and ϒ ( 5 S ) resonances and has an integrated luminosity of 915 fb 1 , corresponding to ( 836 ± 12 ) × 10 6 e + e τ + τ events. We search for production of the HNL (denoted N ) in the decay τ π N followed by its decay via N μ + μ ν τ . The search focuses on the parameter-space region in which the HNL is long-lived, so that the μ + μ originate from a common vertex that is significantly displaced from the collision point of the KEKB beams. Consistent with the expected background yield, one event is observed in the data sample after application of all the event-selection criteria. We report limits on the mixing parameter of the HNL with the τ neutrino as a function of the HNL mass. Published by the American Physical Society2024 
    more » « less
  2. We measure the branching fraction and C P -violating flavor-dependent rate asymmetry of B 0 π 0 π 0 decays reconstructed using the Belle II detector in an electron-positron collision sample containing 387 × 10 6 ϒ ( 4 S ) mesons. Using an optimized event selection, we find 125 ± 20 signal decays in a fit to background-discriminating and flavor-sensitive distributions. The resulting branching fraction is ( 1.25 ± 0.23 ) × 10 6 and the C P -violating asymmetry is 0.03 ± 0.30 . Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  3. A<sc>bstract</sc> We report measurements of the absolute branching fractions$$\mathcal{B}\left({B}_{s}^{0}\to {D}_{s}^{\pm }X\right)$$,$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{0}/{\overline{D} }^{0}X\right)$$, and$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{\pm }X\right)$$, where the latter is measured for the first time. The results are based on a 121.4 fb−1data sample collected at the Υ(10860) resonance by the Belle detector at the KEKB asymmetric-energye+ecollider. We reconstruct one$${B}_{s}^{0}$$meson in$${e}^{+}{e}^{-}\to \Upsilon\left(10860\right)\to {B}_{s}^{*}{\overline{B} }_{s}^{*}$$events and measure yields of$${D}_{s}^{+}$$,D0, andD+mesons in the rest of the event. We obtain$$\mathcal{B}\left({B}_{s}^{0}\to {D}_{s}^{\pm }X\right)=\left(68.6\pm 7.2\pm 4.0\right)\%$$,$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{0}/{\overline{D} }^{0}X\right)=\left(21.5\pm 6.1\pm 1.8\right)\%$$, and$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{\pm }X\right)=\left(12.6\pm 4.6\pm 1.3\right)\%$$, where the first uncertainty is statistical and the second is systematic. Averaging with previous Belle measurements gives$$\mathcal{B}\left({B}_{s}^{0}\to {D}_{s}^{\pm }X\right)=\left(63.4\pm 4.5\pm 2.2\right)\%$$and$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{0}/{\overline{D} }^{0}X\right)=\left(23.9\pm 4.1\pm 1.8\right)\%$$. For the$${B}_{s}^{0}$$production fraction at the Υ(10860), we find$${f}_{s}=\left({21.4}_{-1.7}^{+1.5}\right)\%$$. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  4. Abstract A series of data samples was collected with the Belle II detector at the SuperKEKB collider from March 2019 to June 2022. We determine the integrated luminosities of these data samples using three distinct methodologies involving Bhabha (), digamma (), and dimuon () events. The total integrated luminosity obtained with Bhabha, digamma, and dimuon events is (426.88 ± 0.03 ± 2.61) fb−1, (429.28 ± 0.03 ± 2.62) fb−1, and (423.99 ± 0.04 ± 3.83) fb−1, where the first uncertainties are statistical and the second are systematic. The resulting total integrated luminosity obtained from the combination of the three methods is (427.87 ± 2.01) fb−1
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  5. We present a search for the baryon number B and lepton number L violating decays τ Λ π and τ Λ ¯ π produced from the e + e τ + τ process, using a 364 fb 1 data sample collected by the Belle II experiment at the SuperKEKB collider. No evidence of signal is found in either decay mode, which have | Δ ( B L ) | equal to 2 and 0, respectively. Upper limits at 90% credibility level on the branching fractions of τ Λ π and τ Λ ¯ π are determined to be 4.7 × 10 8 and 4.3 × 10 8 , respectively. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  6. We report measurements of time-dependent C P asymmetries in B 0 K S 0 π 0 γ decays based on a data sample of ( 388 ± 6 ) × 10 6 B B ¯ events collected at the ϒ ( 4 S ) resonance with the Belle II detector. The Belle II experiment operates at the SuperKEKB asymmetric-energy e + e collider. We measure decay-time distributions to determine C P -violating parameters S and C . We determine these parameters for two ranges of K S 0 π 0 invariant mass: m ( K S 0 π 0 ) ( 0.8 , 1.0 ) GeV / c 2 , which is dominated by B 0 K * 0 ( K S 0 π 0 ) γ decays, and a complementary region m ( K S 0 π 0 ) ( 0.6 , 0.8 ) ( 1.0 , 1.8 ) GeV / c 2 . Our results have improved precision as compared to previous measurements and are consistent with theory predictions. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available January 1, 2026